Short Fiber Composites

• Dispersion
 – No clumping
 – Random or uni-directional
 – Miscibility

• Adhesion
 – Responsible for stress transfer
 • Maximize fiber contribution
Mechanisms of Adhesion

• Adsorption
• Chemisorption
• Diffusion
• Electrostatic
• Mechanical Interlock
Adsorption

• Intimate intermolecular contact
 – Forces between atoms of the substrate and resin
 • Van der Waals
 • Hydrogen bonds
 • Not a covalent bond
 Need good wetting

Contact Angle Measurement

\[\gamma_{GS} = \gamma_{LS} + \gamma_{GL} \cos \sigma \]

Surface Tension

\[\gamma_{SV} = \gamma_{SL} + \gamma_{LV} \cos \theta \]

Chemisorption

• Creation of a strong chemical bond
 – Covalent bonding
 • Sharing electrons
 – Need wettability or sorption

Diffusion

- Inter-penetration of polymeric chains
 - Adhesion between two polymers
 - Commingling of polymer chains
 - Need mutual diffusion

Electrostatic

- Development of electrostatic forces at interface
 - Materials transfer electrons
 - Conducting materials

Mechanical Interlock

• Penetration of adhesive into voids and asperities of substrate
 – Creates an anchor within substrate
 – Need wettability
 – Correct rheology

Wood Composite Adhesion

• Primarily through mechanical interlocking
 – Thermosets (PF, UF)
 • Good adhesion
 • Low viscosity
 • Stronger affinity
 – Thermoplastics
 • High viscosity
 • No affinity

• Other potential mechanisms
 – Adsorption
 – Chemisorption
Wood-Plastic Compatibility

- Polar/Non-polar Incompatibility – Oil and Water
 - Mixing and Dispersion
 - Processing Methods (required)
 - Compatibilizers
Compatibilizers for WPC’s

• Coupling/Dispersing Agents
 – Maleic Anhydrides
 – Silanes
 – Titanates

• Coupling
 – Other polymers
 • Most polymers are not miscible
 – Fillers
 • Mainly inorganic
 – Glass, carbon, metal

• Thermoset Resins
 – Poly Diphenylmethane diisocyanates (pMDI)

Bicerano, J. 2005
Silanes

• **Monomeric Silicons**
 – Multi-functional
 • Engineered for specific composites

• **Surface Treatment**
 – Pre-treatment of fibers and fillers

• **Cross-linking mechanism**
 – Used to promote cross-linked system
 • VTMS

• **For WPC’s**
 – Research phase

Silane (Silicon-Based) Chemical

\[
\text{H (hydride)} \quad \text{(methyl)} \quad \text{CH}_3 - \text{Si} - \text{OCH}_3 \quad \text{(methoxy)} \quad \text{CH}_2\text{CH}_2\text{CH}_2\text{-NH}_2 \quad \text{(aminopropyl)}
\]
Maleic Anhydrides

- Polymer based CA
 - Grafted with matrix polymer
 - MAPP, MAPE
 - Developed for inorganics
 - Glass fiber
 - Variations
 - MW
 - Maleic content
 - Compared to grafted polymer

- Improves surface energy
 - Promotes H bonding and possibly covalent??
MA Coupled WPC’s

- Improvement in:
 - Mechanical
 - MOR
 - Physical
 - Water resistance
 - Creep?
 - Relative to increased load
MA Coupled WPC’s

- Water Resistance
 - Lowers diffusion coefficient
 - Improves durability
 - Less weathering effects

Water Sorption of HDPE-WPC’s

Soak Time (hr)

Water Sorption (%)

Soak TIme (hr)

Water Sorption of HDPE-WPC’s
Processing MA Coupled WPC’s

- MA Extrusion Influences
 - Can lower output
 - Require different lubricants
 - More difficult to run
 - Surface appearance
 - Change in rheology
 - Lower melt pressures
pMDI

• Common for traditional wood composites
 – Strong bond with wood
 • Consume water
• Concept
 – Sticks to anything

• WPC’s
 – Limited work
 – Issues
 • Low cure temp
 • Volatiles
 – Foams
 – Needs water
 • Dispersion….
References

• http://www.specialchem4adhesives.com