OPEN SECTIONS - THIN WALL THEORY:

\[\phi = \frac{\theta}{L} \]
\[\phi = \frac{M}{JG} \]
\[J = \frac{6t^3}{3} \]
\[\varepsilon = \frac{M}{6t^3} \]

APPROACH FROM PLATE THEORY:

\[M_{xy} = D(1-\nu)\frac{w_{xy}}{t^2} \]
\[t = \frac{C M_{xy}}{t^2} \]
\[w = C \cdot xy \]
\[w_y = Cx \]
\[@ x = 0 \quad w_y = 0 \]
\[C_L = \theta \]
\[\phi = \frac{\theta}{L} = \theta \]
\[M_{xy} = \frac{E h (1 - \nu)}{12(1 - \nu^2)} \phi = \frac{E h^3}{12(1 - \nu^2)} \phi \]

For isotropic materials, \(G = \frac{E}{2(1 + \nu)} \)

\[M_{xy} = \frac{G h}{6} \phi \]

If we replace \(M_{xy} \) with a couple force \(2M_{xy} \theta_b \)

\[M = 2M_{xy} \theta_b = \frac{G h^3}{12} \phi \]

\[J = \frac{3}{h} \]

\[M = GJ \phi \]

\[\phi = \frac{M}{GJ} = \text{same twist as determined from elasticity} \]

So plate theory indicates twist is resisted by small couples.

\[\varepsilon_{\max} = \frac{6 M_{xy}}{h^2} \]

\[\varepsilon_{\max} = \frac{6}{h^2} \frac{M}{26} = \frac{3M}{6h^2} \] (Same result as found from elasticity)

Note: \(\varepsilon \neq \phi \) are from plate bending now, not from in-plane direct stress (membrane)
In closed sections, \(I \) & \(\phi \) are from in-plane (direct) stresses.

Closed section stress distribution:

[Image of closed section with labeled arm = size of box]

In open sections, \(I \) & \(\phi \) are from plate bending.

Open section stress distribution:

[Image of open section with labeled formulas]

Now:

\[
M = M_1 + M_2 = (J_1 G_1 + J_2 G_2) \phi
\]

If \(G_1 = G_2 \),

\[
M = (J_1 + J_2) G \phi = \left(\frac{b_1 t_1^3}{3} + \frac{b_2 t_2^3}{3} \right) G \phi
\]

\[
J = \sum_{i=1}^{n} \frac{b_i t_i^3}{3}
\]
NOTE: JOINTS DO NOT AFFECT THE RESULTS, THEREFORE DO NOT WORRY ABOUT THEM. CURVES CAN BE CUT INTO MULTIPLE STRAIGHT SECTIONS

\[M = J G \phi \]

\[n = 7 \]

\[J = \frac{\pi}{2} \frac{b_i t_i^3}{3} \]

\[M_5 = \frac{J_5}{J} M \]

\[\varepsilon_5 = \frac{M_5}{b_5 \frac{t_i^3}{3}} \]
End Diaphragms are required to transfer torsion.

Two options to attach:

Weld \(M_x \) to ARM.

If both sides are welded, the transfer arm is larger thereby reducing the transfer stress.

For thicker walled sections,

\[
\frac{b t^3}{3} = \frac{b t^3}{3} \left(1 - 0.083 \left(\frac{t}{b}\right)^2\right)
\]

However for \(\frac{t}{b} \leq \frac{1}{5} \), use \(\frac{b t^3}{3} \).

\(G \neq \frac{E}{2(1+\nu)} \) is the reason.

Let's re-investigate a closed box.

\[
M = J_{\text{closed}} G \Phi + J_{\text{open}} G \Phi
\]

\[
J_c = \frac{4A^2}{3} = \frac{4b^4}{4b^4} = \frac{t b^3}{3}
\]

\[
J_o = \varepsilon \frac{b t^3}{3} = \frac{4 b t^3}{3}
\]

\[
J = \frac{2 b^3}{3} + \frac{4 b t^3}{3}
\]
\[J = \frac{\sqrt{6}}{6} \left[1 + \frac{4}{3} \left(\frac{t}{6} \right)^3 \right] \]

This overestimates by \(\frac{4}{3} \left(\frac{t}{6} \right)^2 \)

For \(t = \frac{1}{2}'' \), \(b = 5'' \)

\[J = \frac{\sqrt{6}}{6} \left[1 + \frac{4}{3} \left(\frac{1}{100} \right) \right] = \frac{\sqrt{6}}{6} \left[1 + 0.01333 \right] \]

Use this if the open section is large relative to the closed section.

Suppose the box is the core of a high rise.

[Diagram of a box with dimensions and annotations]
ANALYZE AS A CANTILEVER.

\[\Delta = \Delta_b + \Delta_v \]

\[\Delta = \frac{VL^3}{3EI} + \frac{VL}{AG} \]

\[\Delta = \frac{120q(50)^3}{3E(8)(30)^3} + \frac{120q(50)}{(8)(30) G} \]

IF WE WERE TO SET THIS EQUAL TO THE DEFLECTION OF A CLOSED SECTION OF THICKNESS \(\varepsilon \)

\[\Delta_{sh} = \frac{qL^3}{6E} (50) \]

\[\Delta = \Delta_{sh} \Rightarrow \varepsilon = 0.3'' \]

OPEN THEORY IS CALLED ST. VENMANT TORSION